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Abstract—A one-dimensional theory for isotropic homogeneous beams with a general cross-section
is developed that utilizes both deformations in the cross-section plane and warping out of the cross-
section plane where these deformation functions are known from Saint-Venant's elasticity solutions
for bending and flexure of a prismatic beam (first-order warping functions). In contrast to existing
technical beam theories which assume that local cross-section deformations and some stresses can
be neglected, the present theory makes no assumption. The finite element model is developed
using the resulting differential equations along with a partially weak-form formulation. Full three-
dimensional constitutive equations are used. Solutions are found using the finite element method.
Numerical results. which are presented for a wide variety of loadings and boundary conditions.
show that the calculated stresses and displacements are in excellent agreement with existing elasticity
solutions.

INTRODUCTION

Without a loss of gencrality, consider a prismatic beam of length L and characteristic height
It that is composed of a homogencous isotropic material. The beam is subjected to a
transversely distributed load p(z) that acts along the beam surface (line x =0,y = §,z2).
For additional details sce Fig. 1. Existing technical (one-dimensional) beam theories [for
example Love (1927)]. have been developed based upon the assumption that the three
stresses within the cross-section are small and can be ncglected. Classical beam theory
(commonly catled a Bernoulli-Euler beam theory) further assumes simple kinematical
relations with respeet to the displacement ficlds, i.c. plane sections perpendicular to the
undcformed axis remain plane and perpendiculir to the deformed axis. As a consequence,
the two remaining transverse shear stresses (as a result of zero shear strains) also vanish.
Hence, the complete description of the beam deformation is determined using the remaining
normal stress where the strain energy of the beam includes only bending effects. For long
slender isotropic beams (L/h > 10), it is well known that the strain energy due to shear is
negligibly small compared to bending, thus the Bernoulli-Euler approach leads to a suitable
representation of gross structural behavior,

As the geometric aspect ratio (L/h) gets smaller, the ratio of the shear strain energy to
bending strain energy becomes significant and the effects of transverse shear deformation
cannot be ignored. Timoshenko (1921, 1922) developed a beam theory that accounts for
transverse shear deformation bused on the assumption that plane sections perpendicular to
the undeformed axis remain perpendicular after deformation. Since the assumption that
plane scctions remain plane after deformation still holds, the resulting transverse shear
strains (and corresponding shear stresses) are constant throughout the cross-section, thus
violating the requirement of a stress-free boundary condition on the lateral boundarics. A
shear correction factor (k) is introduced to improve the model's global displacement
behavior, where this factor is dependent upon the section shape, material definition, and
load type. Unfortunately, there are as many estimates of () for a given cross-section, as
there arc definitions for their existence [for example Cowper (1966) and Kancko (1975)],
and the resulting displacement solutions are sensitive to the selected (k) value.

Recently, Levinson (1981), Heyliger and Reddy (1988) and Kant and Gupta (1988)
developed theories that more accurately represent the kinematical relations of a transversely
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Fig. 1. A beam with its reference axes.

loaded shear deformable beam. These theories. which are commonly called “Higher Order
Theories™, are capable of modeling the parabolic distribution of the transverse shear stresses
through the thickness which is needed to satisfy the stress-free boundary conditions on the
lateral surfaces. Thus, a shear correction factor is not needed. This approach is limited to
simple beams with thin rectangular cross-sections. because of the difficulty of defining the
kinematic displacement ficld for a general cross-section. This approach has been extended,
by Reddy (1984), to the analysis of plates.

Beam theories that include the warping of the cross-section as a result of applied
transverse loads have also been developed. Viasov (1961) developed a model that includes
the out-of-plane warping for thin-walled isotropic beams having simple cross-sections
{circular tubes, I-beams, rectangular box beams). Bauchau (1985) extended this approach
for thin-wall composite beams where cigen-warping functions are used to model the out-
of-plane shear-dependent warping,

Analytical models have also been developed for determining the in-plane cross-section
deformations and out-of-plane warping of a beam with an arbitrary cross-section subjected
to bending and tip shear loads (Saint-Venant's bending and flexure problems). These
solutions, which are based upon solving a coupled two-dimensional elasticity problem, have
been developed for arbitrary cross-sections compaosed of isotropic materials by Mason and
Herrmann (1968), a restricted class of orthotropic materials by Warndle (1982), and
generally anisotropic materials by Kosmatka and Dong (1991).

The cross-section warping (both in- and out-of-plane) and stress distribution depend
not only upon the geometry and the material definition, but also on the type of loading.
The description of the warping function becomes inereasingly more complex as the apphed
louding changes from simple end loadings to non-uniform distributed loads. Furthermore,
this description also becomes more complex if one tries to study higher vibrational (short
wavelength) modes because of the change in shear stress distribution with mode number
[sec Goodman and Sutherlund (1951) for details]. But for most beam-type structures there
is a class of warping functions that are dominant. These functions are defined as first-order
functions and their magnitudes are lincarly proportional to the focal stress resultants.

For the sake of simplicity and clarity, the following theory is developed for an isctropic
beam having a gencral cross-section subjected to arbitrary transverse loadings. It can easily
be extended to the analysis of more complex material definitions as long as one can obtain
the requisite first-order warping functions. In this study, a set of numerical examples is
presented to fully verify the current approach by studying a beam with a rectangular cross-
section subjected to a wide variety of boundury conditions and loadings. The selected
warping functions for the isotropic homogencous rectangular cross-section were derived
from Sokolnikoff (1956). The out-of-planc function represents the warping of the cross-
scction as a result of an applied transverse tip load (Saint-Venant flexure problem) and the
in-plane function represents the anticlustic surface that results from an apphed bending
moment (Saint-Venant bending problem),
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THEORETICAL DEVELOPMENT

Consider a prismatic beam composed of an isotropic homogeneous material having a
general cross-section (see Fig. 1). A Cartesian coordinate system (x, y, ) is defined on the
beam where x and y are coincident with the principal axes of the root cross-section and =
is coincident with the line of centroids. The beam is subjected to both transverse distributed
loadings (p) and end loads (Q,. M,) in the y—: plane. The displacement distributions in the
x-, v- and z-directions are defined as

a(x.y.2) = M Us(x, »),
Flx.y,2) =v(@)+ M) Vy(x. p),
W(x. 12 =)+ Q) Hh(x. ), (la—<)

where v(z) and Q(2) represent the displacement and local shear force in the y-direction,
respectively ; €(z) and AM(z) represent the rotation and local moment about the x-axis,
respectively, and U,(x, ¥). Fo(x. v) and Wy(x, ») are the functions associated with the in-
plane and out-of-plane warping definition, respectively. These last three functions, which
are assumed to be known, can be determined for a given cross-section by solving Saint-
Venant's elasticity problems for bending and flexure {see Mason and Herrmann (1968),
Worndle (1982) and Kosmatka and Dong (1991)]. The units associated with these three
functions must be defined carefully so that when they are multiplied by the appropriate
stress resultant, the resulting product has units of length.
The strain-displacement relationships of the beam are defined as

e =, £,=0, €=W, Y.=0,4+W,, Ye=W .+, 7V,=10,+0, (2a-f)
where ¢, &, and &, are the normal strains in the x-, y- and z-directions, respectively, and
7ves 7o @nd 7, are the shear strains. The notation () and (), refer to partial derivatives
with respect to the x and p coordinates respectively. The general constitutive relations arc
given as

{a} = [Cl{e}, (3a)

where the stress and strain arrays are defined as

| AL ]
{U,' - {0’,, Oy Oy Ty Teas Ty s

= {l:" E)" £:' 7}':’ yx:v .I'x_v}v (3b,C)

and the material stiffness matrix is given as

- G426) A L0 0 0-
i G+26) 4 0 0
<l i (1426) 0 0 )
0 0 0o G 0
0 0 0O 0 G 0
L o 0 0o 0 0 G-

Here, 1 and G arc defined as Lamé’s constants.
The bending moments and shear forces in the cross-section are defined as
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~

M) = J yvo.d4, Q) = j 1. dA4 (4a.b)
4 A

where A is the area of the cross-section.

To be consistent with using only the first-order warping functions (while neglecting
the higher-order functions), the variation in the shear forces over the beam length, which
must be equal to the applied transverse loads (due to the elemental equilibrium in the 3-
direction). s set equal to zero. This assumption is made so that the displacement field can
be expressed in terms of kinematical variables only. instead of the mixed formulation of
(la-<). Thus.

Q' =—-p(c2} =0, (5

where prime denotes the derivative with respect to =. Using eqns (1)—(5) one can express
the bending moment about the principal axes as

M) = ElY, (6a)
where
~ (A420)
£ =5 (0
H, = f Y Uo + Ve, )dA, (6¢)
4

and 7 is the arca moment of inertia about the x-axis. For homogencous isotropic cross-

seetions, the functions U,y and V) are required to satisfy: Uy = V. = —vy/El (from Saint-

Venant's plane strain bending problem), and thus H, reduces to ~2v/E and E = E.
Similarly, using eqns (4b) and (3) the local shear force @ can be written as

Q0= GJ v A, (Ta)
A
or it can be defined by making usc of eqns (2d) and (1) as
Q= GJ e+ 0)+ M Vy+QW, | dA {7b)
A

and A’ can be replaced by Q. Solving for Q:

O = koGA(v" +0) (7T¢)
where
ko = R (7d)
(1-GH;)
and
H, = L (Vo+ W,,)dA. (7¢)

Substituting eqns (6) and (7) into eqn (1) results in the final form of the displacement
relations defined in terms of the kinematic variables (v and 8) only:
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a(x, y.2) = 0y (x. »)
o(x, y,2) = v+ 0y.(x, ),
wix, y,2) = y0+" + 0 .(x.¥) (8a—)

where

V. (x. y) = EIU(x, y).
¥, (xy) = EVy(x. ).
V.(x, ¥) = koGAWy(x, 3). (9a-¢)

This displacement field will be used as the basis for the remaining development, where no
limiting assumptions are made corresponding to load type.

EQUILIBRIUM EQUATIONS

The two equations of equilibrium for the beam are determined by applying the principle
of virtual work

L

L .
SU—SW, = J‘ j‘ {a}T {0} dd d:—-‘[ pdr,dz =0 (10)
4] A L]

where v, represents the displacement on the surface of the beam at the point of the applicd
load [v(x = 0, y = §)]. The resulting differential equations are

Q' +p-8i+S82=0 (1a)
M —Q+S8,—85,+8,-8"1=p¥, =0 (11b)

where ¢, is the magnitude of the warping displacement at the point of the applied load
given as:

Y, =y, (x=0,py=7y) (c)

and the force and moment resultants (S, through §,) are defined in the Appendix (eqns
A1-A4). From the above equilibrium equations (i1a,b) it is readily apparent that for an
isotropic homogeneous beam subjected to a concentrated flexure load at the tip, the result-
ants must satisfy: S} = 8% and §% = S§7. Similarly, for a uniformly distributed load:
S7Y=38% and ST =387, and for a linearly varying distributed load: S7 = 8% and
ST = 87, For rectangular cross-sections, it further holds that for a tip loaded beam
(constant shear) that: §% = §% = 0, for a uniformly distributed load that: §5 = §7 =0,

and for a lincarly varying distributed load that: S7 = §7 = 0. Alternatively, the above
equilibrium equations can be written in terms of the kinematic variables (v, 8) as

D" — Ay (V' +6)— (A4, —D\1)0—-p=0 (12a)

A0~ (D —=24,)0"+ A4, (" +0) +(4 i:"‘Diz}i‘m'*‘P’J’: =0 (12b)

where 4, and D;; (i.j = 1, 2) are shear stiffness and bending stiffness constants, respectively,
that are defined in the Appendix (eqns AS through A10). There are four necessary sets of

boundary conditions that must be specified at the beam root and tip. First, either the
transverse displacement (v) or the effective shear force:
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0=0-5+S.. (13a)

must be defined. Second. either the derivative of the transverse displacement (") or the
out-of-plane warping-based work done (S§,) must be specified. Third. either the rotation 6
or the effective bending moment :

M=M+S+S,~S,—py,. (13b)

must be specified. Lastly, either the derivative of the rotation ¢ or (S,) must be defined.

FINITE ELEMENT MODEL

One could use the principle of stationary potential energy to develop a finite element
representation of the above equations. The problem that is encountered though, is the
incorporation of the four boundary conditions. Unfortunately, some of these conditions are
not physically meaningful. Hence, in this paper. a variational (or partially weak) for-
mulation is used to develop the finite clement equations where the governing equations (egn
1) are used and integration by parts is performed only once to get the necessary recognized
terms, such as transverse displacements (¢), rotations (#), shear forces and moments. As a
consequence, the stiffness matrix is non-symmetric.

The beam is divided into a series of subregions where the kinematic variables (¢, 0) for
cach subregion are represented by approximate functions of the form

r=Y p b =3 4.0, (14a.b)
1

e~ 1 7
where 1, and ©, are nodal displacements and rotations, respectively, and ¢, and ¢, arc

continuous fully differentiable functions with respect to = Writing the variational form of
the two governing cquations as

1
0=f G JQ +p—=8T+S55]dzr i=1., m
0
1
0= J Pu[M =Q+S1 =8 +5 =Si-pyJdzs j=1....n (134,b)
[})
where the expressions in the brackets arc the equilibrium equations from eqns (11a,b). The

following expressions are defined by integrating the above functionals by parts once:

¢

0. 5+ j b pdz

It

1 L
f $.Qd-+ J ¢, (ST—S2)d:
0 0

!

L p
j o M dz+ J $o(Q - Si+S:—S)+ S dz
¢ 0

)

1l

1
(/».IMH,-—J o, dz. (161.b)
0

A finite clement formulation is obtained by expressing the stress-dependent constants
(M.Q.S,-S,) in terms of the kinematic variables (r, 6} of eqn (14a.b) using eqns (3a—d),
(2a-f) and (8a-c). In matrix form, the model can be written as

[[K..,.l [Km]] { { V:} _ { { n:}+ {.‘/;.:} a7
[th-] [Kml] {@} { Fr' } { .ﬁ' : '

where {17} and {@} are mth and nth order one-dimensional arrays that contain the unknown
nodal displacements and rotations from eqn (14a,b), respectively, {F.} and {F,} and mth
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and nth order one-dimensional arrays that contain the applied nodal forces and moments,
respectively, and the remaining sub-matrices are defined in the Appendix (eqns AL1-ALS).

NUMERICAL EXAMPLES AND DISCUSSION

Numerical examples are presented to illustrate the accuracy of the current approach
in comparison with existing models (full three-dimensional elasticity. plane-stress elasticity,
Timoshenko beam theory, and Bernoulli-Euler theory). Displacement and stress dis-
tributions are examined for an isotropic homogeneous beam with a rectangular cross-
section as a function of beam length [from short deep (L/h = 3) to long slender (L/h = 20}]
for three different load/boundary configurations. The warping functions for a rectangular
cross-section are determined using a full three-dimensional elasticity solution [from Sokol-
nikoff (1956)] as

Up(x.y) = — E%xy. (18a)
, v - -
Va(x,y) == ;F[(_r‘ —x°) (18b)
ly b, \ 2nmy\ [ 2nnx '
P ) o (=1 ann o cosf —5 nmy
Wolx, v} =~ Tt Lt Z e I OSSR
O Ell 6 - 2 A nwl
- (n¥)ycosh| -
b
(18¢)

where b and & represent the cross-section width and height in the x- and y-directions
respectively, 7 is the cross-section arca moment of incrtia and £ and v are defined as the
Young's modulus and Poisson ratio (taken equal to 0.25) of the material, respectively.

The value of (k) for a rectangular cross-section can be determined by substituting
eqns (18b,c) into (7¢), carrying out the integration, and then substituting the resulting value
for H,into eqn (7d):

ky = : . (19)

1+ L+ (t b:) 2vh? & (= 1) !
P v - 3y - 3 i i
2{1+v) e ah & o h(:mix)
cosh| —
b

This coefficient (ko) will approach 2/3 for very thin rectangular cross-sections (b/h x 0) or
for negligible Poisson's ratios (v = 0). The variation of ko, along with 4,;and D, (i, j = 1,2),
for a varicty of cross-section aspect ratios is presented in Table I, where the section shear
and bending stiffnesscs have been non-dimensionalized. These results clearly show how

Table 1. Non-dimensionalized values of A, and D, for various rectangular cross-section aspect ratios (A/h)

hib 400 100 10 1 1/3 /s
AIGA 0.562 0.562 0.562 0.587 0.395 0.716
AL/GAR —0.0048 ~0.0048 —0.0047 0.0017 0.0317 ~0.182
A1s/GAR? 0.0002 0.0002 0.0002 0.0006 0.0[80 0.128
D, JEL, 0.686 0.6%6 0.687 0.714 0.463 0.732
D JEL, -0.134 -0.134 -0.134 -0.122 -0.173 0.749
D.JEI, 0.0463 0.0463 0.0462 0.0409 0.191 1.765

ko 0.6667 0.6667 0.6671 0.7090 0.8155 0.8301
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quickly the constants converge for thin cross-sections. The desired form of the warping
functions (y..¢,.¥.) from eqns (8a—c) can be determined by substituting eqns (18) and
(19) into (9a—). Thus.

o= —vxy (20a)

e = (=X, (20b)

and . is found using eqn (9¢). where k, and W, are defined in eqns (19) and (18¢).
respectively.

[t is interesting to note that the kinematic relations (eqns 8a—c) for this rectangular
cross-section reduce identically to both the beam kinematic relations of Levinson (1981) if
the rectangular cross-section is assumed to be very thin and to the cylindrical bending
displacement distributions described by the refined higher-order plate theory [see Reddy
(1984)] by setting v = 0. Thus

4=0,

U=,

SN PELC N 2
W= ~a\j (0+c) |, (21a-¢)

where g, =, = Oand ¥, = — (43 H/(3N7).

The finite clement model is developed using Lagrangian polynomials, where the dis-
placement in the p-direction (¢) is represented by a fitth-order function using six equi-spaced
nodes and the rotation (0) is represented by a fourth-order function using live equi-spaced
nodes. The displacement polynomial was sclected as one order higher than the rotation
polynomial in order to eliminate any potential “shear-locking™ problems for long slender
beams [sce Tessler and Dong (1981)]. Other higher-order polynomials could be selected,
but the current set of polynomials represents the minimum order needed to ensure that all
terms are properly represented. This clement was fully numerically integrated using Gaus-
sian quadrature and numerical studies verificd that there was no evidence of “shear-locking™
even for extreme aspect ratios (L/h 2 1000). The following numerical results were obtained
using only one element. Additional convergence-type studies, using more elements were
performed, which showed that the one element solution is correct. Clearly, if more com-
plicated beam-type structures are analyzed, then one would model these structures using
an assembly of the current elements. For results obtained using the Timoshenko beam
theory, the same clement definition (fourth- and fifth-order Lagrangian polynomials) was
selected in order to be consistent with the present model. Two values of the shear correction
factor (2/3 and 0.8475) were examined.

The three analytical studies that were considered included : a cantilever beam with a
square cross-section subjected to a transverse tip-load, a simply-supported beam with a
very thin cross-section (h/h = 400) acted upon by a distributed load, and a cantilever beam
with a very thin cross-section (h/h = 400) subjected to a lincarly varying distributed load.
The thin cross-section was sclected for the latter two studics, so that the current model
could be directly compared with the planc-stress clasticity solutions of Timoshenko and
Goodier (1970). Results are presented for the maximum transverse displacement (¢/vye) as
a function of beam length (L/h), where (vy:) is the Bernoulli-Euler prediction for the
same aspect ratio, load and location. In addition. the calculated transverse shear stress
distributions (zyz/ty=-elasticity) as a function of the location within the cross-section (2y/h)
are presented for an extremely deep beam (L/h = 4), where (tyz-clasticity) is the elasticity
shear stress at the section centroid (x = » = 0) of the same (2) location.

i
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1.10 —e—  Cumremt approach, Elasticity
== Timoshenko (ke2/3}

~—e—  Timoshenko (k=0.8475)
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1.
000 5 10 15 20
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Fig. 2. Tip displacement of a tip-loaded cantilever beam.

Cantilever beam with a transverse tip load

As an initial study. the beam was fixed (v = 8 = 0) at the root (- = 0) and a con-
centrated flexure load Q, was applied at the tip (z = L). In Fig. 2, the predicted tip
displacements are presented as a function of the beam length aspect ratio for the current
approach, the elasticity solution, the Timoshenko beam theory, and the Bernoulli-Euler
beam theory. All of the models are in exact agreement for long slender beams (L/h 2 20)
where the strain energy associated with the transverse shear stresses is negligible in com-
parison to the bending stresses. For extremely short deep beams (3 < L/A < 10), the current
model is in exact agreement with the three-dimensional elasticity solution of Sokolnikoff
(1956), whereas the Timoshenko-based predictions cither slightly over-predict or under-
predict the elasticity results depending on whether (k = 2/3) or (k = 0.8475), respectively.

The non-dimenstonalized transverse shear stresses as a function of location within the
cross-scction (at x =0 and x = +b/2, —h/2 < y € h/2) are presented in Fig. 3, for the
current model, the elasticity solution and the Timoshenko beam theory. The predicted
parabolic shear stress distribution using the current model agrees exactly with the existing
clasticity solution at all x- and y-valuc locations, whercas the constant shear stress dis-
tribution calculated using the Timoshenko theory is well known to be tncorrect. The
magnitude of the Timoshenko predicted shear stresses, which are actually independent of
the chosen value of the shear correction factor (k), are equal to the average shear stress
Q. A where A is the cross-section area. Furthermore, all of the previously mentioned higher-
order theories (Levinson, 1981 ; Heyliger and Reddy, 1988 ; and Kant and Gupta, 1988)

1.0

0.5 . !
Elastcity ; at x=0

2yth

0.0]1 —=— Current approach,
Elastictty ; 8 x=g /2

—e—  Timoshenko
(k iIndependent}
-0.5

-1.0
0.0 0.2 04 0.6 0.8 1.0 1.2

tyz/tyz-elasticity
Fig. 3. Transverse shear stress distribution at the root of a tip-loaded cantilever beam.

SAS 29:7-G
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will only predict the exact shear stress distribution on the vz plane that passes through
the centroid (v = 0) because they do not properly account for the x-dependency in the
displacement field

Simply-supported beam with a uniformly distributed load

A second study was performed where the boundary conditions for the beam ends
2= 0,L) were defined as simply supported (¢ = 0) and the applied load is uniformly
distributed along the beam length. The cross-section of the beam was chosen to be very
thin (&'/h = 400} so that the current results could be directly compared to the plane-
stress elasticity solutions of Timoshenko and Goodier (1970). The non-dimensionalized
displacements at the beam mid-length as a function of beam length aspect ratio are presented
in Fig. 4 for the four different models. For long slender beams (L4 = 20y, all four of the
models agree since the strain energy assoctated with the shear stresses can be neglected. For
extremely short deep beams (L/# € 5), the current model and the Timoshenko beam theory
with & = 0.8475 predict mid-length displacements that are slightly greater (more flexible)
than the plane-stress clasticity solution. These results are excellent considering the severity
of the beam length aspect ratio and the fact that the results from the current approach were
obtained using the (first-order) warping description obtained from Saint-Venant's flexure
problem (tip-toaded beam). Thus, proving that the added displacements effects associated
with the higher-order warping functions are negligible in comparison to the first-order
warping functions for uniformly loaded beams. This agrees with the theory developed by
Michell (1901), which assumes that the analysis of a uniformly loaded beam reduces to a
plane strain problem if the warping displacement from Saint-Venant's flexure problem is
known. It is tnteresting to note that although Timoshenko's theory with £ = 2/3 almost
cxactly predicts the displacements for a tip-loaded cantilever beam (sce above), it over-
predicts the displacements in this example. Furthermore, using a value of & = 0.8475 gives
necarly the exact planc-stress clasticity solution.

As in the case of a cantilever beam with a trunsverse tip load, an identical figure {sce
Fig. 3) is obtained for the non-dimensionalized transverse shear stresses at v = 0. The
parabolic distribution predicted by the current model is in perfect agreement with the plane-
stress elasticity solution of Timoshenko and Geoodier (1970}, while the constant stress
distribution predicted using the Timoshenko theory is incorrect and independent of the
selected shear correction factor (k).

Cantilever beam with linearly varying distributed load

A final study was performed using an extremely short deep beam (L/h = 4) fixed
(r =0 = 0) at the root (= = 0) and subjected to a lincarly varying distributed load with
vanishing intensity at the tip. Again, the beam has a very thin cross-section (h/h = 400) so

1.4 -

et Elasneity

e Cutrant appeoach,
Timoshenko (k=0 8475)

g Timnoshertho (ke2/3)

vilvge

11

1.0

Aspect Ravo {Uh)

Fig. 4. Mid-length displacement of a simply-supported beam subjected to a uniform distributed
toad.
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05

—CO— Elastichty

2y/h

=== Timoshenko {k independent}

02 00 02 04 06 08 10
Tyz/tyz-elasticity

Fig. 5. Transverse shear stress distribution at z = 3 L/4 of a cantilever beam subjected to a linearly
varying distributed load.

that direct comparison with the plane-stress elasticity solutions of Timoshenko and Goodier
(1970) can be made. The non-dimensionalized shear stress distribution over the section
height (x = 0, —/#/2 < y < h/2) at = equals 3L/4 is presented in Fig. 5. Additional shear
stress distributions for (0 < - € L/2) were calculated and found to be in exact agreement
with the plane-stress elasticity solutions (i.e. identical to Fig. 3 at x = 0). The current model
behaves surprisingly well considering that the beam should behave more like a three-
dimensional solid than a one-dimensional beam and thus from Saint-Venant's principle the
current approach should not be valid in this region. Generally speaking, the current model
trics to best approximate the solution in the integral sense.

Although it is possible to cxtend the current model by incorporating additional higher-
order warping functions, it does not appear to be necessary even for short deep beam-type
structures. Higher-order warping functions may play an important role for beams with
extremely low aspect ratios (closer to solid structures than beam structures) or for higher
vibrational modes.

CONCLUSION

A one-dimensional beam theory has been developed that accurately predicts the three-
dimensional displacement and stress distribution in homogencous beams with a general
cross-section. The displacement field is developed using the standard kinematic relations to
describe the global beam behavior supplemented with an additional field that represents
the local deformation within the cross-section and warping out of the cross-section plane.
It was assumed that the magnitude of this additional field is directly proportional to the
local stress resultants. The current displacement field has been shown to reduce exactly to
existing higher-order beam theories that have been developed for thin rectangular cross-
sections and to refined higher-order plate theories for cylindrical bending displacement
distributions provided that the Poisson ratio is set equal to zero. A finite element model has
been developed using a partially weak formulation to ensure that the resulting boundary
conditions represent physically meaningful quantities. Numerical results illustrate that the
predicted displacements and stresses (including the parabolic shear stress distribution) are
in a nearly exact agreement with existing elasticity solutions over a broad range of length
aspect ratios (3 € L/h < 1000), boundary conditions and applied load definitions. Alter-
natively, the predicted displacement distributions for short deep beams using the Timo-
shenko beam theory can be very accurate, but these results are dependent upon the selected
shear correction factor (k).
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APPENDIX
The moment resultants are defined as
S aj g . dA. S, = J T+, dd, (ALD)
L] 4
S, = j D S (P 1L E R j T b, A, (A3.4)
4 4
the A, and the D, are defined as

Ay =ay+ayy, A =antan, A =agtda, (AS-T)

D, =a +ay+a,+a,+a. Dy =ds Dy =ay, (AB-10)

and finally, the stiffness submatrices and the force submutrices iare defined as

(L
[K.] =j (areldi 1) —tay s +ard [ 0 +agd ) {87 ]1dz, (AlD

]

1
(K. ’*'j {fln.{él}r{(bu}+<hr{¢1}rf¢3}—(ﬂu-\‘—ﬂ,:){!ﬁ'u?r{%}+(a7*'dn—um){sﬁp}r{éﬁ}d:. (A1)
)
‘ Tyar [PRLEY ATE A G Al3
{Km}'—" [{au‘l"an){‘}sd} :d"-}‘i"("a:"“a"“N“’%n‘*“n)ﬁbu} \@a-}’*’“a{‘bo}f gd’-i} <y { }
o

e
{Kul = J {(a, +“;:){¢e;}T{‘.br):"*‘ffs{‘f’::}r{d’:v} +{ay; *“:;){‘ﬁ«x}rifﬁ;'}
It}
+(-'“;-‘ﬂ')—“v—l‘xs*’zdm*zmx){(ﬁﬂ}f{fbe‘;}}dl (Al

* i

i
. =.’ plp )T dz {ful = ""‘,L £ e T dz, (AlSa.b)
i

where the constants a, through @, are defined as:
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a =j. (A+2GWL +Ay+¥,, +¥. .. ]d4, a:= j Ay, dd.

a; =J‘ [(A+2GW], + Ay +¥,  +¥I,,]d4, a,= J' A, . dA,
A 4

as = J. [A+2G)(y+y ) +iW +¥, )]vdd, ag= J (A+2G) . d4.

a; =f ((A+2GXr+¥ )+ AW +¥, )¢, d4. a, =J (A+2G)] d4.

a, = J: G(l+¢.,)’ dd. g = J; Gy, (1+¢.,)d4d,
an =L G¥ldA. ay; =£G¢}_‘ dd. ay, =£G¢,w,_, dA.
s =Lc¢sd4. as =LG(¢,,,+¢U)‘M,
a4y = f GUl+¢.)d4, a,, = J: Gy, dA,

dyy =J. Gl+y. ., dd. a =‘[ Gy.y.,dA.
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(A16.17)

(Al8,19)

(A20.21)

(A24,25)

(A26-28)

(A29,30)

(A31.32)

(A33,34)



